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Abstract

This interim report describes the research being conducted in the formulation of

hierarchic models for laminated plates. The work, conducted in collaboration with

Professors Babu_ka and Schwab of the University of Maryland, is an extension of

the work done for laminated strips [3]. The use of a single parameter/3, representing

the degree to which the equilibrium equations of three-dimensional elasticity are

satisfied, is being investigated. The powers of/3 identify members in the hierarchic

sequence.

Included in this report are numerical examples that were analyzed with the

proposed sequence of models. The results obtained for square plates with uniform

loading and with homogeneous boundary conditions are very encouraging. Several

cross-ply and angle-ply laminates were evaluated and the results compared with

those of the fully three-dimensional model, computed using MSC/PROBE, and

with previously reported work on laminated strips [3].
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1 Models for laminated plates

Consider an infinite flat plate of constant thicl_ess h composed of thin layers of

orthotropic material perfectly bonded together. Each layer (lamina) possesses a

plane of elastic symmetry parallel to the x-y plane. The laminae are symmetrically

arranged with respect to the middle surface of the plate (i.e., the x- y plane). The

load q(x, y) is antisymmetric with respect to the middle plane, and q(x, y) = 0 for

Ix[ > a, [y[ >_ b, with a and b some fixed number. Let a = 1/a and 7 = 1/b, and

further let:

= min(a,_) (1)

Assume that the displacement field can be written in exponential forn_

_(x,y,z) = ¢(Z,z)_'z(_÷y) (2)

_y(x,y,z) = ¢(Z,z)_'_(_÷,) (3)

_,(_,y,z) = p(_,z)_'_(_+_) (4)

where

¢(Z,z) = ¢o(9,z) +i¢b(Z,z) (5)

¢(Z,z) = ¢=(Z,z)+i_(Z,z) (6)

p(_,z) = po(_,z)+ipb(_,z) (7)

where ¢_, Cb, ¢_, ¢b are antisymmetric real functions, and p_ and pb are symmetric

real functions with respect to the middle surf_e of the plate (lmvJnate).

The strain components corresponding to the displacement field given by (2), (3)

and (4) are:

_x -" _X

a_ =i5¢¢_(,:+y ) (9)
eY --- W

0u, = p, ei_(x+y ) (10)
_z "--

OU x OUy

z_y = --ff;+-5-_ =iZ(¢+ ¢) _'_(_+_) (11)

_ = _z +-5;=(¢'+iZ

_ - -5-;+ = (¢' + i_p)_'_(_+_) 03)



where the primes represent differentiation with respect to z.

Let x', y' be the material (lamina) coordinates for any layer rotated an angle

8 with respect to the global coordinate system about the z axis. Then the stress-

strain relations in the global (laminate) system for any layer can be written as:

{o}=[_-1 [c][_ {,} (14)

where [C] is the lamina material stiffness matrix in the lamina coordinate system

(x', y', z), and [T] is the transformation matrix. Defining

[Q]= [_-1 [c_[_ (15)

as the transformed lamina material matrix, equation (14) can be written as:

'_ Qll Q,2 Q,3 0 0 QI_'

av Qn Q_3 0 0 Q:6

a_ Q33 0 0 Q3_
-,-.

-ry_ sym. Q44 Q45 0

_-_, Q55 o

. Tzy Q66

_X

Ey

Ez

_z

The equilibrium equations with zero body force components are given by:

(16)

a_, _ a_,,0-%-+ + --_-z=0 (17)

--0-7+W =o

0--7+-_-y +-_-z=0.

(18)

(19)

Substituting equations (8) to (13) and (16) into (17) to (19) the following equi-

librium equations ate obtained:

{-/32[(Qll + 2Q16 + Q6_)¢ + (Q12 + Q16 + Q26 + Q66)¢] +-

i/_[(Q,3+ q_)p' + (Q_p)'+ (Q_p)']+

(Q45¢' + Q55¢')'}e iz(_+y)= 0 (20)
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{-_[(q12 + Q16 + Q26 + Q66)¢ + (Q22 + 2Q26 + Q66)_] +

i _[(Q23+ Q3_)p'+ (Q.,p)'+ (Q4_p)']+

(Q44 ¢' + Q45 ¢')'}e 'z(_+y) = 0 (21)

{-_[(Q4_+ 2Q4_+ Q_)p]+
i/_[(Q_ + Q45)¢' + (Q45 + Q55)¢' + ((Q13 + Q_)¢)' +

((Q23+ Q36)¢)'1+ (Q_p')'}_(_+_)= 0 (22)

Expanding ¢(fl, z), ¢(fl, z) and p(fl, z) into a Taylor series with respect to fl:

¢(_,z) = [¢o0(z)+i¢_(z)] + _[¢_(z)+iCbl(Z)]+ _[¢.2(z) +i¢_(z)] +.-.

¢(]_, Z) = [_)a0(Z) + i I/)b0(Z)] "4- ]_[_bal(Z ) -_-i _)bl(Z)] "4- ]_2[¢.2(Z) At- i _b2(Z)] "[-" ' •

p(_, Z) -" [PaO(Z) "4- i PbO(Z)] "_- ]_[Pal (Z) -_- i Pbl (Z)] _- _2_Oa2(Z) "4- i Pb2(Z)] -[- " " "

On substituting into the equilibrium equations (20), (21), (22) and separating

into real and imaginary parts (only the real parts are shown here) we have:

The real part of (20):

(Q_¢'0+ Q_¢'0)' + Z[(Q_¢', + Q_¢'_)': (Q,3+ Q:6)plo-
((Q4_+ Q_)p_o)']+

-{" _[(Q45_ba_2 + Q55_'2)' - (Q13 + Q26)p[1 -

((Q45 +Q_)pb_)'- (QI_ + 2Q,6 + Q66)¢_0 -

(Q12 + Qt6 + Q26 + Q66)_Pao]+... = 0 (23)

The real part of (21):

(Q4_¢'0+ Q_¢'0)'

The real part of (22):

(Q_£o)' +

+ /_[(Q_¢'_+ Q45¢'I)'- (Q23+ Q36)p_o-
((Q_ + Q_)pbO)']+

+ _[(Q_¢'_ + Q_¢'._)'- (Q_ + Q_)pll -

((Q44+ Q4s)pbt)'- (Q12+Q16+Q26+ Q66)q)ao-
(Qn + 2Q26+ Q66)¢_0]+-.- = 0 (24)

Z[(Q.£I)' - (Q_+ Q4_)¢_0- (Q4_+ Q_)¢io-
((Q13 "_" Q36)¢b0) t- ((Q23 "[-Q36)_)b0) '] "_-

+ _[(Q_p'2)' - (Q_ + Q_)_41- (Q_+ Q_)¢_,-
((QI_+ Q3o)¢b_)'- ((Q:_+ Q_6)¢_1)'-
(Q44 + 2Q45 + Q55)p_o] +-" =0 (25)

These equations hold for any choice of ft. Solving for each power of/3 we obtain

the transverse shape functions as described in next section.



1.1 The model characterized by/3 °

Setting f_ = 0 in equations (23) to (25) we have:

(Q4_¢'o+ Q_¢'o)' = 0 (26)

(Q_¢'o+ Q_¢'o)' = 0 (27)

(Q_p'o)' = o. (28)

Knowing that ¢.o(z), ¢.o(z) are antisymmetric and p,o(z) issymmetric, and Lute-

grating, we have:

¢°o(z) = ro(z) (20)

¢.o(z) = Go(z) (30)

p.o(z) = 1. (31)

Similarly, solving the hnaginaxy part of the equilibrium equations we get:

where

¢_(z) = F0(z) (32)

¢_(z) = ao(z) (33)

Pbo(Z)= 1. (34)

Q_ - Q_ dz (35)
Fo(z) = / Q_Qss- Q_5

Q55 - Q45 dz. (36)
Go(z) = / Q44Qss - Q_5

To obtain these transverse functions we adopted all integration constants to be

either 0 or 1. This accomplishes one important aspect, i.e., there is only 'one'

transverse function per field. If the integration constants are arbitrary, the solution

is:

_oQ. : boQ45dz (37)¢=o(z)

¢=o(z) = J bOQ_QssQ55-_aoQ_sQ45dz (38)

poo(z)= co. (39)
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Note that with either choice of the integration constants, the resulting transverse

functions (29), (30), (31) or (37), (38), (39) satisfy the equilibrium equations. Se-

lecting the integration constants to be some convenient numbers is acceptable be-

cause the equilibrium equations are still satisfied.

The real and imaginm'y parts are not linearly independent, hence both lead to

the same functional form. The mode of deformation corresponding to fl = 0 can

be written in the following form:

_(x,y,z) = _,(x,y)F0(z) (40)

_,(_,y,z) = _2(x,y)a0(z) (41)

u_(_,y,z) = _3(_,y). (42)

When Q44, Q45, Q55 are constant trough the thickness, this model is capable of

representing rigid body displacement and rotation. However, this model does not

satisfy the condition of converging to the same limit as the problem of elasticity

as h _ 0, unless some adjustments are introduced to the material properties as

discussed later.

1.2 The model characterized by _1

To find the mode of deformation for the model which satisfies the equilibrium

equations up to the first power of fl, we differentiate (23) to (25) with respect to fl

and let fl = 0. In this case we have:

(Q45_1-{--Q55¢a_l)'- (Qla-t-Q26)p_o- ((Q45-{-Q55)pbo)'- 0 (43)

(Q_¢/_ + Q_5¢',)'- (Q_3+ Q_)plo- ((Q. + Q_)p_o)' = 0 (44)

(Q_p',)' - (Q. + Q4_)_ - (Q_+ Q_)¢io-

((Q,_+ Q_)¢bo)'- ((Q_+ Q_)_)' =o.

Upon integration we have:

(45)

¢_(z) - Fo(z)+ z (46)

_2al(Z)-- Go(z)+z (47)

p_(z) = 1+Ho(z) (48)



and solving the imaginary part of the equilibrium equations:

where

Cb,(Z)= Fo(:)- z

_l(Z) = Go(Z)-z

pba(Z)= 1-- Ho(z)

Ho(z) = f [2z + (Qla + Qas) F° + (Q_ + Qa6) G°] dz'Q_

The displacement field in this case is:

(49)

(50)

(51)

(52)

_(x,y,z) = _l(X,y)ro(z)+_4(_,y)z (53)

_y(_,y,z) = _2(x,y)G0(z)+_(x,y)z (54)

_(_,y,z) = u3(_,y)+_6(x,y)Ho(z). (55)

1.3 The model characterized by/32

To find the mode of deformation for the model which satisfies the equilibrium

equations up to the second power of/3, we differentiate (23) to (25) twice with

respect to/3 and let/3 = 0. Upon integration, the following results are obtained:

where

El(Z)

Vl(z)

Hi(z)

Ca2(z) = F0(z) + z + Fl(z) (56)

¢,,2(z) = Go(z) + z + Gl(z) (57)

p,,2(z) = 1 + Ho(z)- g_(z) (58)

( MoQ_,- NoQ_ _ Ho) dz (59)=

Zf{ N°-Q55 : M° Q45 - Ho) dz (60)= _, Q44Q55-Q_s

= _[(Q13+203s+Q23)Q33
] zdz. (61)
J
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and

io(z)- /[(Qll-I-2Q16-I-Q66- (Qls-I-Q26) Q1 s6 Fo

..-i _Q2s + Qs_
+(Q12+Q16+Q26+Q66-(Qls+w26j _7--_" )Go

Qls + Q26]dz.
-2z Q_ j (62)

Z

No(z)-" i [(Q,2 "J-Q,6 "J"Q26-i" Q66- (Q23 "J-Q36)Q13"J- _36 _

v

Q_ + Qs6'_
+(Q,, + 2Q,6 + Q66 - (Q,s + Qa6) Q-_ ) Go

Q:3+Q3_]_z. (63)-2z Q3, j

Therefore the displacement field can be written in the form:

u::(x,y,z) - Ul(X,y)Fo(z)J-u4(x,y)z-'l-UT(X,y)Fl(Z) (64)

u_(x,v,z) = u_(x,v)Go(z)+_5(..,y)z+us(..,v)al(z) (65)

u.(.,,y,z) = _3(..,y)+_(..,y)_o(z)+_9(,.,y)H,(z). (66)

This mode of deformation satisfies both the real and imaginary parts of the equi-

librium equations up to the second power of/3. By continuing this process, the

equilibrium equations can be satisfied to an arbitrary power of ft.

2 The limiting case when f_ _ 0

One of the requirements of the hierarchic sequence of models is that each member

converges to the same limit as the exact solution of the problem of elastidty as

h --, 0. We know from the evaluation of the laminated strip that the first two

members of the hierarchy do not meet this requirement if some materials properties

are not adjusted. We also learned that the adjustments are different for the first and

for the second member of the hierarchy. The model which satisfies the equilibrium

equations up to the second power of/_ is the first member of the hierarchic sequence

of strip models which converges to the fight limit as h _ 0.
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The exact solution minimizes the potential energy with respect to all functions

ui(x,y), i = 1, 2,... for which the strain energy is finite. The limit for each model

is obtained as follows:

1. Start with the expression of the potential energy:

II = _ j-h�2 =e= + as, % + a_ e_ + 7"=y%y + r=_ %_

+T,z %z)dx dy dz - J_. ;_ q(x, y) u_(x, y, h/2) dx dy (67)

For a given plate model, compute the strain components and perform the integra-

tion through the thickness (z direction) to obtain the material coefficients. These

coefficients form the laminate material stiffness matrix Ell. Rewrite the potential

energy in terms of the Eii.

1

J J_ d j_l
(6s)

In the case of the flo model, the potential energy expression is:

L k__) 0x \-_-_/

Oy Oy + E_ + _,_ / Oy + E_\ Oy / +

0_1 C_U l 12 G_Ul _

El0 u_ + 2 F_q,ul u2 + _2 u] + 2 F__s_xx Oy + 2 _4-_x Oy +

Olt2 (_1 _2 _2 GQU3 0?23 G_U3

2Easox Oy +2E_6_xx 0y +2E_Tul_-x +2Easu2--_-x +2F-_gul-_y +

2 Eao u2 --_ ] dx dy - __ _J_ q(x, y) us(x, y, h/2) dx dy (69)

2. Obtain the Euler equations by taking the variation of the potential energy with

respect to each one of the field variables ui(x, y), i = 1, 2, .... Apply Fourier

transform to the Euler equations and construct the system of linear equations in

the transformed field variables Ui(_, 7/):

[A]{t:}= {R} (70)

The matrix [A] depends on the material stiffness matrix EO, and on the Fourier

variables _, and 77,and {R} is the load vector obtained from the transformation of

the potential of the external forces.
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3. Compute values for Eij for different stacking sequences and solve the system of

equations for U3 for each one of them:

D(,_, r}) U3 = B(_, r/) Q (71)

where

,D= + D2 ,7+O3,72+ D4 4+ Ds 3,7+
D6_r} 2 + DT_r} 3 + D._' +-.- (72)

is the determinant of [A], and

B(_, 7/) = B0 + BI_ + B2 _r/+ }73712+... (73)

is the determinant of [A] when the third row was replaced by the load vector {R}.

4. Perform the limit analysis as h _ 0. First divide Di by B0:

Di for i = 1 _ 3, j = 1 _ 3 (74)
=B0

Di

j3j - _ fori=4_S, j=l-+5 (75)

Note that B0 is the first non-zero term of B(_, _7). Neglecting derivatives higher

than fourth order we obtain the general equation :

+ u, +
(/71_4 +/_ _" n + f13_2 + f14_3 + fish4)0"3 = Q. (76)

This last equation has the following form after inverse Fourier transform:

(_ 04u3 0%3 0%3 c_u3 04u3__ + & c9x3-------_ +/_ cgx2cgy2 + f14 cgxOy3 + fls cOy,tJ = q" (77)

If the hierarchic plate model being evaluated converges to the proper limit, the

coefficients ai should be zero. This is because all models should converge to the

Kirchhoff model as h --, 0 [3], which requires that c_i = 0. If the a_ are not zero, the

model needs adjustment of the m.,_terial properties. The/3i m,xy require adjustment

also, so that they have the same values as those of the models that converge to the

same limit as the theory of elasticity as h _ 0.

Following this procedure, it has been found using Mathematica 1 that the model

characterized by/7o is not a member of the hierarchy. However, making the trans-

verse shear moduli constant through the thickness, the c_ become zero. Further

discussion of this model is deferred to next section.

1Mathematica: A system for doing mathematics by computer. Wolfrman Research Inc.
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Figure 1: Model problems: Notation.

3 Examples

Consider a square plate of uniform thickness h and planar dimensions a and b = a,

composed of perfectly bonded orthotropic layers, symmetrically distributed with

respect to the middle plane, (Fig. 1). The number of layers, the stacking sequence

(orientation of the material axes with respect to the global axes), and the boundary

conditions are the variables used in several representative model problems.

Uniform load is applied as a normal traction to the top and bottom surfaces of

the plate. All layers in the laminate are of equal thickness, and are of a square sym-

metric unidirectional fibrous composite material possessing the following stiffness

properties, which sinmlate a high-modulus graphite/epoxy composite:

EL = 25.0 x 106 psi Err = 1.0 x 106 psi

GLT "- 0.5 x 106 psi C,Tr = 0.2 x 106 psi

12LT "" _ -- 0.25

where L indicates the direction paralld to the fibers, T is the transverse direction,

and b'LT is the Poisson ratio (i.e., I/LT -" --err�eLL, where err, eLL are, respectively,

the normal strains in the directions T and L). These material properties were

selected from reference [1].
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When the L direction coincides with the x direction, we refer to it as the 0 = 0°

orientation. For a three-plies laminate a designation 90/0/90 means that the central

lamina is oriented with the L direction parallel to the global x-axis, and in the two

outer layers L is at 90 ° with the global x-axis.

In order to establish a reference solution which can be regarded as being suf-

ficiently close to the exact solution of the problem of elasticity, the problem was

solved using the finite dement program MSC/PROBE 2 and an experimental pro-

gram in which the algorithm described in this report is implemented. In the ref-

erence solution obtained with MSC/PROBE each layer was discretized as a three-

dLmensional element with orthotropic material properties. The solution was ob-

tainedfor p ranging from 1 through 8. in energy norm was below 1% at p - 8. The

solution corresponding to p = 8 will be used as the basis for comparison.

The solutions corresponding to the proposed hierarchic models were obtained

using only one laminated plate element. The polynomial degree was varied from 1

through 8 and the equilibrium equations were satisfied up to fil .

The model that satisfies the equilibrium equations up to the zeroeth power of

fl was modified as indicated in the previous Section. The transverse shear moduli

of each layer (Q. and Q55) were made equal to the harmonic averages ()_ and

Q_, while Q45 was made equal to the average _45. In the case of three layers for

instance, the harmonic average of Q44 is:

1 + (78)

The following changes were introduced for each layer:

Qi3 Qj3 i, j = 1, 2, 6. (79)= Q,j ,

This modification is necessary to account for the plane stress constitutive equations

for each layer used in the Kirchhoff and Reissner-Mindling type plate models [2],

[6].
We will denote the modified model characteriz_ by fl0 with fl_,n. The plate

deflection at a given location (x., yn, z,,) was selected to evaluate the models. The

normalized plate deflection is defined as:

u. 100Erh u.(x.,yn,0) (S0)
qa 4

where q is the applied traction, h is the thickness of the plate and uz(xn, y,,, O) is

the vertical displacement of the middle plane of the plate at x = xn, y = y,,.

2MSC/PROBE: User's Manual, The MacNeal-Schwendler Corporation, 1600 S. Brentwood

Blvd., Suite 840, St. Louis, Missouri 63144.
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Normalized Central Displacement

Three-plies Laminate (90/0/90)

Uz
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0.00
2
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[3

I I I I I I LII I. l I I I I I II I t I I I I I I

20 200 2000

a/h Ratio

Figure 2: Orthotropic square plate. Four sides simply supported.

3.1 Cross-ply laminate

The results for a three-plies orthotropic (or cross-ply) simply supported square

plate are shown in Fig. 2. For large a/h ratios both models yield similar results.

As a/h decreases, the flo model underestimates the deflection while the fll model

is very close to the MSC/PROBE solution.

Fig. 3 show the results for a three-plies (90/0/90) square plate with two opposite

sides simply supported and the other two free. The central deflection of the plate is

compared with the results of the laminated strip model described in reference [3].

Fig. 4 correspond to the same problem but with five layers (90/0/90/0/90). The

agreement between the beam and plate models is excellent.

The influence of the number of layers in the end deflection of a square plate with

one end clamped and the other three free is shown in Fig. 5 for three different a/h

ratios. In all cases the fibers in the outer layers were normal to the clamped edge

of the plate. Also included in the figure are the results of the deflection computed

using a simplified beam formula which is valid for the case a/h _ _. According

to reference [4] the end deflection of a cantilever beam of length a and thickness h

with uniform load q is:

q_' (81)
u= = 8 Dll
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Uz
4.00

3.50

3.00

2.50

2.00

1.50
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Normalized Central Displacement
Three-plies Laminate (90/0/90)

I I I I I _ t _ _ ] !

2O

! ! i _]__3__

200
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Figure 3: Or_ho_ropic square plate. Two sides simply supported.

Uz

Normalized Central Displacement
Five-plies Laminate (90/0/90/0/90)

iii!iiiiiiiiiiiii i !ii !!!!      !! !i!!! ii!i!!!!iiii!iiiiii ii,

0 [ I I I I I I I 1 I I _.l I I I I l I I I ] I i I I i

1 10 100 1000

a/h ratio

Figure 4: Ortho_ropic square plate. Two sides simply supported.
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Normalized End Displacement

Influence of Number of Layers

Uz
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iiiiiiiiiiiiiii iiiiiiii  iiiiiiii  iii    iiiiiii!!iiiiiiii!iiiiii!iiiiii{iiiiiiiiiiiiiii! iiii

Outer fibers normal to damped edge

Figure 5: Orthotropic square plate. One side clamped.

where

+h/2

DlX=_//2
Qll z 2 dz (82)

The deflection computed by the use of (81) is identified as 'Beam (a/h _ _)'. The

results indicate that when the number of layersincreases the bending stiffness of

the plate decreases to an asymptotic value. In the limit when we have an infinite

number of alternating plies, the laminate will become quasi-homogeneous. The

property of the laminate will be square symmetric but not homogeneous [5].

3.2 Angle-ply laminate

The results for a three- and four-plies simply supported square angle-ply laminated

plate are shown in Fig. 6 and in Fig. 7 respectively. In this case the stacking

sequence is such that all layers are oriented at either 45 ° or -45 °. For the three-

plies plate, the agreement between the MSC/PROBE solution and the hierarchic

models is similar to the case of cross-ply laminates. For the four-plies plate no

MSC/PROBE results are still available.
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Figure 6: Angle-ply square plate. Four sides simply supported.

: Uz
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Figure 7: Angle-ply square plate. Four sides simply supported.
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Figure 8: Angle-ply square plate. Influence of fiber orientation.

The influence of fiber orientation in the central deflection of a three-plies square

plate with two opposite sides simply supported (2-sides SS) and Four sides simply

supported (4-sides SS) is shown in Fig. 8. In this case the a/h ratio was kept

constant at a/h = 10 an the orientation of the fibers in the central layer was varied

between 0 and 90 °. The fibers in the outer layers were always at 90 ° with the ones

of the central layer. The results for the _3° and/3] models are included for each

boundary condition.

4 Summary and conclusions

1. Hierarchic models for mid-plane symmetric laminated plates have been de-

veloped based on a single parameter ft. The powers of the parameter/_ rep-

resenting the degree to which the equih'brium equations of three-dimensional

elasticity are satisfied, have been used to identify members of the hierarchic

sequence.

2. The model characterized by flo is the Reissner-Mindlin model, generalized for

laminated composites, when the modified material properties are used (also
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known as Fwst order shear deformata'on model). In the special case, when

the shear modulus is independent of z, the hierarchic model is the Reissner-

Mindlin model. The shear correction factor can be assigned arbitrarily since

the requirements set for hierarchic models are satisfied independently of the

shear correction factor.

The advantage of a single parameter sequence of models is that the number of

fields added per level is always the same. Three fields are added per increment

of power of H, regardless of the number of layers.

Good correlation between the proposed hierarchic sequence and a three-

dimensional solution has been found for the problems investigated. More

work is under way to compare not only displacements but stress distributions

as well.
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